Embedded Systems Design and Modeling

Chapter 3
Modeling Discrete Dynamics

Outline

- Introduction to discrete systems
- Discrete systems modeling by examples:
 - Parking lot counter
 - Temperature controller
 - Traffic light controller
- Finite state machines:
 - Different representations
 - Formal definition
- System properties

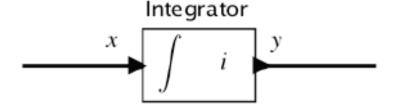
What Is A Discrete System?

- Discrete system: operates in a sequence of discrete steps rather than continuous time
- Steps might be based on external events or passage of time
- The system may truly operate discretely (inherently discrete)
- Or it may be inherently continuous but modeled in a discrete way

Actor Model Review

Recall Actor Model of a Continuous-Time System

Example: integrator:



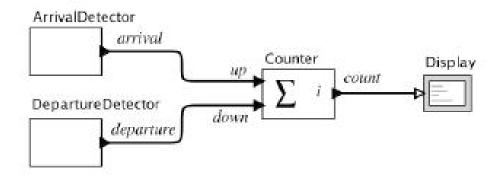
Continuous-time signal: $x: \mathbb{R} \to \mathbb{R}, x \in (\mathbb{R} \to \mathbb{R}), x \in \mathbb{R}^{\mathbb{R}}$

Continuous-time actor: Integrator: $\mathbb{R}^{\mathbb{R}} \to \mathbb{R}^{\mathbb{R}}$

Example: Parking Counter

Discrete Systems

Example: count the number of cars that enter and leave a parking garage:



Pure signal: $up: \mathbb{R} \to \{absent, present\}$

Discrete actor:

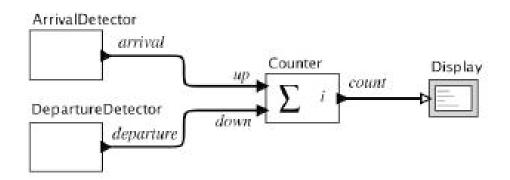
Counter:
$$(\mathbb{R} \to \{absent, present\})^P \to (\mathbb{R} \to \{absent\} \cup \mathbb{N})$$

 $P = \{up, down\}$

Basic Definitions

Reaction

For any $t \in \mathbb{R}$ where $up(t) \neq absent$ or $down(t) \neq absent$ the Counter **reacts**. It produces an output value in \mathbb{N} and changes its internal **state**.



Counter:
$$(\mathbb{R} \to \{absent, present\})^P \to (\mathbb{R} \to \{absent\} \cup \mathbb{N})$$

 $P = \{up, down\}$

Basic Definitions ...

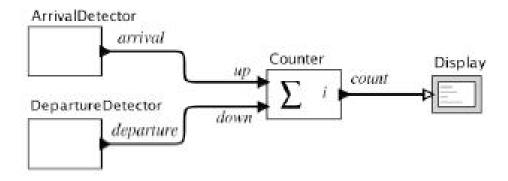
Inputs and Outputs at a Reaction

For $t \in \mathbb{R}$ the inputs are in a set

$$Inputs = (\{up, down\} \rightarrow \{absent, present\})$$

and the outputs are in a set

$$Outputs = (\{count\} \rightarrow \{absent\} \cup \mathbb{N}),$$

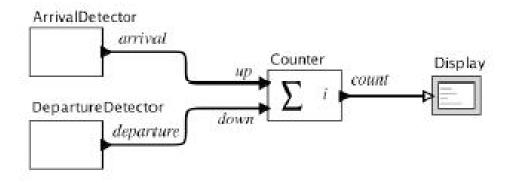


Basic Definitions ...

State Space

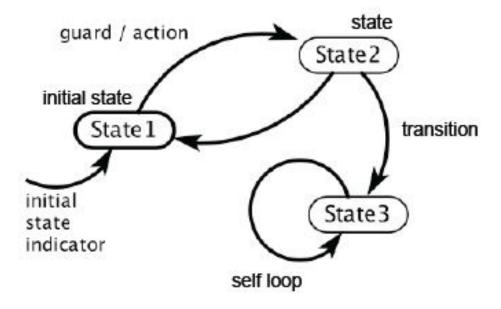
A practical parking garage has a finite number M of spaces, so the state space for the counter is

$$States = \{0, 1, 2, \dots, M\}$$
.



Finite State Machine Recall

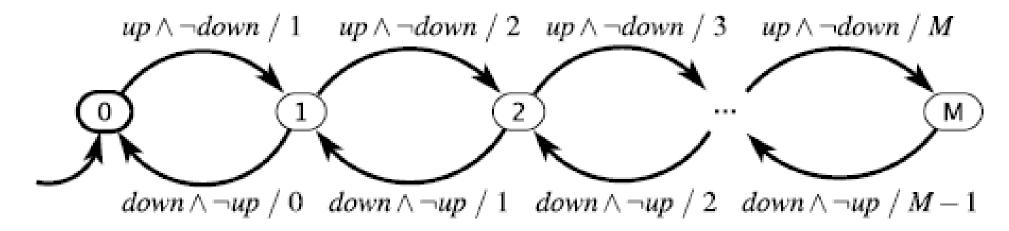
FSM Notation



Example Modeled Using FSM

inputs: up, down: pure

output: $count : \{0, \dots, M\}$



Notations Used

- Initial state: where the FSM starts at
- Actions: specifies what outputs are produced
- Guards: transition conditions expressed as Boolean expressions like these ...

```
Transition is always enabled.

p_1 Transition is enabled if p_1 is present.

\neg p_1 Transition is enabled if p_1 is absent.

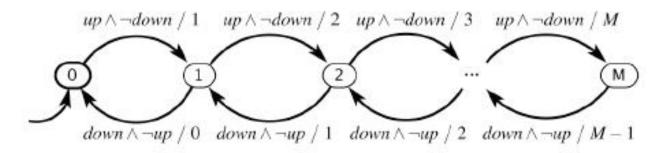
p_1 \land p_2 Transition is enabled if both p_1 and p_2 are present.

p_1 \lor p_2 Transition is enabled if either p_1 or p_2 is present.

p_1 \land \neg p_2 Transition is enabled if p_1 is present and p_2 is absent.
```

FSM Formal Representation

Garage Counter Mathematical Model



Formally: (States, Inputs, Outputs, update, initialState), where

- $States = \{0, 1, \dots, M\}$
- $Inputs = (\{up, down\} \rightarrow \{absent, present\}$
- Outputs = $(\{count\} \rightarrow \{absent\} \cup \mathbb{N})$
- update: States × Inputs → States × Outputs
- initialState = 0

The picture above defines the update function.

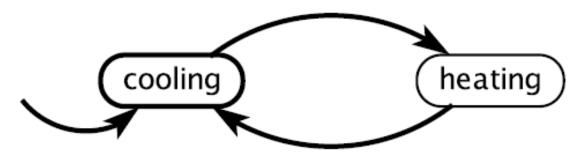
Another Example Using FSM

- A heating/cooling system with two states
- Two target temperatures: 18 and 22 degrees
- Thermostat has hysteresis (avoids chattering)

input: $temperature : \mathbb{R}$

outputs: *heatOn*, *heatOff*: pure

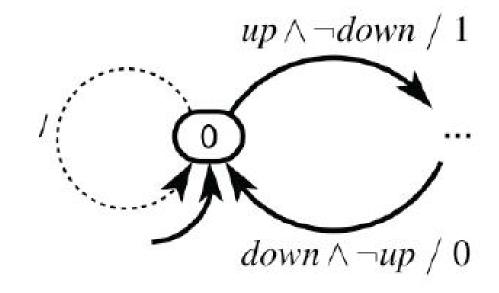
 $temperature \leq 18 / heatOn$



 $temperature \geq 22 / heatOff$

Default Transition

More Notation: Default Transitions

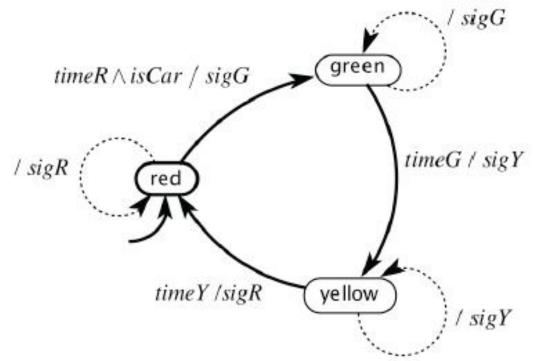


A default transition is enabled if no non-default transition is enabled and it either has no guard or the guard evaluates to true. When is the above default transition enabled?

Time-Triggered Discrete System

- Previous examples: event-based transitions
- This example: time-based transitions

Example: Traffic Light Controller



Some System Properties

- Stuttering transition: (possibly implicit) default transition that is enabled when inputs are absent, that does not change state, and that produces absent outputs.
- Receptiveness: For any input values, some transition is enabled. Our structure together with the implicit default transition ensures that our FSMs are receptive.
- Determinism: In every state, for all input values, exactly one (possibly implicit) transition is enabled.

Nondeterminism

Uses of nondeterminism

 Modeling unknown aspects of the environment or system

2. Hiding detail in a specification of the system

Any other reasons why nondeterministic FSMs might be preferred over deterministic FSMs?

3rd Usage of Nondeterminism

Size Matters

Non-deterministic FSMs are more compact than deterministic FSMs

 ND FSM -> D FSM: Exponential blow-up in #states in worst case

Analysis

Behaviors and Traces

FSM behavior is a sequence of (non-stuttering) steps.

red.

 A trace is the record of inputs, states, and outputs in a behavior.

A computation tree is a graphical representation of all possible traces.

FSMs are suitable for formal analysis. For example, safety analysis might show that some unsafe state is not reachable.

green

Nondeterministic Computation Tree

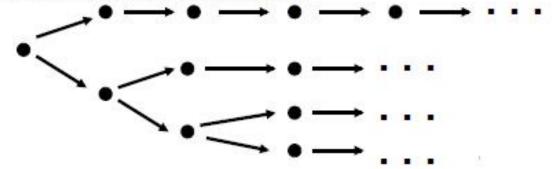
Non-deterministic Behavior: Tree of Computations

For a fixed input sequence:

- A deterministic system exhibits a single behavior
- A non-deterministic system exhibits a set of behaviors
 - visualized as a computation tree

Deterministic FSM behavior:

Non-deterministic FSM behavior:



Further Thoughts

Related points

What does receptiveness mean for non-deterministic state machines?

Non-deterministic ≠ Probabilistic

FSM Representations

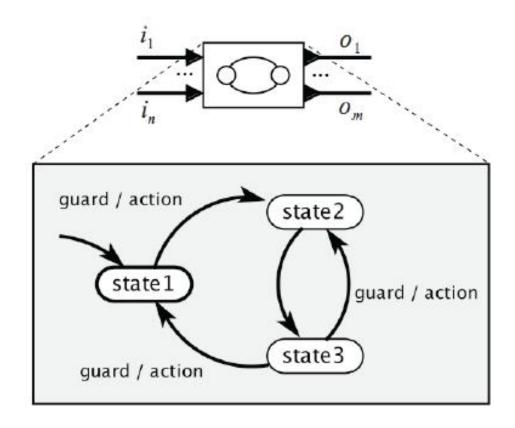
Representing a state machine

- Pictorial notation
- 2. Table representing transition relation
- Functional notation

When would you use each representation?

Introducing FSM Composition

Actor Model of an FSM



This model enables composition of state machines.

Summary

What we will be able to do with FSMs

FSMs provide:

- 1.A way to represent the system for:
 - Mathematical analysis
 - So that a computer program can manipulate it
- 2.A way to model the environment of a system.
- 3.A way to represent what the system *must* do and *must* not do its specification.
- 4.A way to check whether the system satisfies its specification in its operating environment.

Homework Assignments

- Chapter 3:
 - **2**, 3, 4, 5, 6
 - 7 and 8: optional
 - Due date: Tuesday 1403/12/7